··II··II·· CISCO

Optical DWDM Fundamentals

Agenda

- Introduction and Terminology
- Optical Propagation and Fiber Characteristics
- Attenuation and Compensation
- Dispersion and Dispersion Compensation
- Non Linearity
- SM Optical Fiber Types
- Simple SPAN Design
- DWDM Transmission
- ROADM: Operational Benefits
- Cisco ONS 15454 MSPP/MSTP Functionality

Introduction

Optical Spectrum

Specialty wavelengths

980, 1480, 1625 nm

Frequency: *f* (Nerahertz)

Terminology

- Decibels (dB): unit of level (relative measure) –X dB is 10^{-X/10}
- Decibels-milliwatt (dBm): decibel referenced to a milliwatt dBm used for output power and receive sensitivity (absolute value) dB used for power gain or loss (relative value) X mW is 10xlog₁₀(X) in dBm, Y dBm is 10^{Y/10} in mW
- Wavelength (Lambda): length of a wave in a particular medium; common unit: nanometers, 10⁻⁹m (nm)
- Frequency (v): the number of times that a wave is produced within a particular time period

Wavelength x frequency = speed of light $\Rightarrow \lambda \star \nu = C$

Terminology—Fiber Impairments

- Attenuation = Loss of power in dB/km
- Chromatic Dispersion = Spread of light pulse in ps/nmkm
- Optical Signal-to-Noise Ratio (OSNR) = Ratio of optical signal power to noise power for the receiver

ITU Wavelength Grid

- The International Telecommunications Union (ITU) has divided the telecom wavelengths into a grid; the grid is divided into bands; the C and L bands are typically used for DWDM
- ITU Bands

Bit Error Rate (BER)

- BER is a key objective of the optical system design
- Goal is to get from Tx to Rx with a BER < BER threshold of the Rx
- BER thresholds are on data sheets
- Typical minimum acceptable rate is 10⁻¹²

Optical Power

Definition:

Optical Power Is the Rate at Which Power Is Delivered in an Optical Beam

Optical Power Measurements:

- Power is measured in watts; however, a convenient way to measure optical power is in units of decibels (dB)
- The power measured on a particular signal is measured in dBm
- The gain/loss measured between two points on a fiber is in dB

Power loss is expressed as negative dB

Power gain is expressed as positive dB

Optical Power Budget

The Optical Power Budget is:

Optical Power Budget = Power Sent – Receiver Sensitivity

- Calculate using minimum transmitter power and minimum receiver sensitivity
- Attenuation/loss in the link, greater than the power budget, causes bit errors (dB)
- Design networks with power budgets, not distances

Optical Power Budget—Example

- Transmitter maximum power = -2 dBm
- Receiver sensitivity = -28 dBm

Calculate Power Budget = ??		
Short Reach (SR)	6 dB (75% Power Loss)	
Intermediate Reach (IR)	13 dB (95% Power Loss	
Long Reach (LR)	26 dB (99.75% Power Loss)	

Key: Every 3dB is loss of half of signal

Eye Diagram

- The vertical eye opening shows the ability to distinguish between a 1 and a 0 bit
- The horizontal opening gives the time period over which the signal can be sampled without errors

Eye Diagram

- For a good transmission system, the eye opening should be as wide and open as possible
- Eye diagram also displays information such as maximum signal voltage, rise and decay time of pulse, etc.
- Extinction ratio (ratio of a 1 signal to a 0 signal) is also calculated from eye diagram

A Few Words on Optical Safety

- Think optical safety at all times
- Wear specified optical eye protection
- Optical power is invisible to the human eye
- Never stare at an optical connector
- Keep optical connectors pointed away from yourself and others
- Glass (fiber cable) can cut and puncture
- Fiber splinters are extremely difficult to see
- Damage is usually permanent!

Laser Classifications/Safety Icons

CLASS 1 LASER PRODUCT

Class 1

Lasers that are incapable of causing damage when the beam is directed into the eye under normal operating conditions. These include helium-neon lasers operating at less than a few microwatts of radiant power.

LASER RADIATION DO NOT STARE INTO BEAM CLASS 2 LASER PRODUCT

LASER RADIATION DO NOT STARE INTO BEAM OR VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 3A LASER PRODUCT

LASER RADIATION AVOID EXPOSURE TO BEAM CLASS 3B LASER PRODUCT

LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION CLASS 4 LASER PRODUCT

Lasers that can cause harm if viewed directly for ¹/₄ second or longer. This includes helium-neon lasers with an output up to 1 mW (milliwatt).

Class 3A A Many LR Optics, CWDM GBICS

Lasers that have outputs less than 5 mW. These lasers can cause injury when the eye is exposed to either the beam or its reflections from mirrors or other shiny surfaces. As an example, laser pointers typically fall into this class.

Class 3B Class 3B Class 3B

Lasers that have outputs of 5 to 500 mW. The argon lasers typically used in laser light shows are of this class. Higher power diode lasers (above 5 mW) from optical drives and high performance laser printers also fall into this class.

Class 4

Lasers that have outputs exceeding 500 mW. These devices produce a beam that is hazardous directly or from reflection and can produce skin burn. Many ruby, carbon dioxide, and neodymium-glass lasers are class 4.

Protective Eyewear Available

- Protective goggles or glasses should be worn for all routine use of Class 3B and Class 4 lasers
- Remember: eyewear is wavelength specific, a pair of goggles that effectively blocks red laser light affords no protection for green laser light

Laser Safety Equipment Can Be Investigated in Greater Detail at the Following Link:

http://www.lasersafety.co.uk/frhome.html

Optical Propagation in Fibers

Analog Transmission Effects

Attenuation:

Reduces power level with distance

Dispersion and nonlinearities:

Erodes clarity with distance and speed

Signal detection and recovery is an analog problem

Fiber Geometry

An Optical Fiber Is Made of Three Sections:

- The core carries the light signals
- The cladding keeps the light in the core
- The coating protects the glass

Fiber Dimensions

 Fiber dimensions are measured in µm

> 1 µm = 0.000001 meters (10-6)

1 human hair ~ 50 µm

Refractive Index (n)

n (core) > n (cladding)

Geometrical Optics

Light Is Reflected/Refracted at an Interface

- θ_1 = Angle of incidence
- θ_{1r} = Angle of reflection
- θ_2 = Angle of refraction

θc —Is the Critical Angle

If Angle of Incidence Is Greater Than Critical Angle, All the Light Will Reflect (Instead of Refract); This Is Called Total Internal Reflection

Wavelength Propagation in Fiber

- Light propagates by total internal reflections at the core-cladding interface
- Total internal reflections are lossless
- Each allowed ray is a mode

Different Types of Fiber

- Multimode fiber
 - Core diameter varies 50 µm for step index 62.5 µm for graded index Bit rate-distance product > 500 MHz-km
 - **Distance** limited
- Single-mode fiber
 - Core diameter is about 9 µm Bit rate-distance product
 - > 100 THz-km

Attenuation

Attenuation in Fiber

 Light loss in fiber is caused by two things Absorption by the fiber material Scattering of the light from the fiber

Light loss causes signal attenuation

	Scattering
850 nm	Highest
1310 nm	Lower
1550 nm	Lowest

Other Causes of Attenuation in Fiber

- Microbends—Caused by small distortions of the fiber in manufacturing
- Macrobends—Caused by wrapping fiber around a corner with too small a bending radius
- Back reflections—Caused by reflections at fiber ends, like connectors
- Fiber splices—Caused by poor alignment or dirt
- Mechanical connections— Physical gaps between fibers

Optical Attenuation

- Pulse amplitude reduction limits "how far" (distance)
- Attenuation in dB=10xLog(Pi/Po)
- 500 uW -3 dBm Power is measured in dBm: -10 dBm 100 uW P(dBm)=10xlog(P mW/1 mW)-30 dBm ↑ P_i P_0 → T I←

Examples

10 dBm

0 dBM

10 mW

1 mW

1 uW

Attenuation Response at Different Wavelengths

Attenuation: Compensated by Optical Amplifiers

- Erbium-doped fiber amplifiers (EDFA) are the most commonly deployed optical amplifiers
 - Commercially available since the early 1990s
 - Works best in the range 1530 to 1565 nm
 - Gain up to 30 dB (1000 photons out per one photon in)
- Optically transparent

Dispersion

Chromatic Dispersion

- Different wavelengths travel at different speeds
- Causes spreading of the light pulse

Polarization Mode Dispersion (PMD)

- Single-mode fiber supports two polarization states
- Fast and slow axes have different group velocities
- Causes spreading of the light pulse

- Affects single channel and DWDM systems
- A pulse spreads as it travels down the fiber
- Inter-symbol Interference (ISI) leads to performance impairments
- Degradation depends on:
 - Laser used (spectral width)
 - Bit-rate (temporal pulse separation)
 - **Different SM types**

Limitations from Chromatic Dispersion

- Dispersion causes pulse distortion, pulse "smearing" effects
- Higher bit-rates and shorter pulses are less robust to Chromatic Dispersion
- Limits "how fast" and "how far"

Combating Chromatic Dispersion

Specialized fibers: DSF and NZDSF fibers

(G.653 and G.655)

Dispersion compensating fiber

- Transmitters with narrow spectral width
- Regenerate pulse (O-E-O)

Polarization Mode Dispersion

Caused by ovality of core due to:

Manufacturing process

Internal stress (cabling)

External stress (trucks)

- Only discovered in the 90s
- Most older fiber not characterized for PMD

Polarization Mode Dispersion (PMD)

 The optical pulse tends to broaden as it travels down the fiber; this is a much weaker phenomenon than chromatic dispersion and it is of some relevance at bit rates of 10Gb/s or more

Combating Polarization Mode Dispersion

Factors contributing to PMD

Bit rate

Fiber core symmetry

Environmental factors

Bends/stress in fiber

Imperfections in fiber

Solutions for PMD

Improved fibers

Regeneration

Follow manufacturer's recommended installation techniques for the fiber cable

 PMD does not need compensation up to 10G in systems up to about 1600km optical transmission, while compensation is required for longer systems or 40G

How Far Can I Go Without Dispersion Issues?

Distance (Km) = <u>Specification of Transponder (ps/nm)</u> Coefficient of Dispersion of Fiber (ps/nm*km)

A Laser Signal with Dispersion Tolerance of **3400 ps/nm** Is Sent Across a Standard SM Fiber, Which Has a Coefficient of Dispersion of **17 ps/nm*km**

It Will Reach 200 Km at Maximum Bandwidth

Note That Lower Speeds Will Travel Farther

Transmission Over SM Fiber— Without Compensation

Transmission Rate	Distance
2.5 Gb/s	980 km
10 Gb/s	60 km
40 Gb/s	4 km

Industry Standard—Not Cisco Specific

Dispersion Compensation

Total Dispersion Controlled

Nonlinearity

From Linear to Non-Linear Propagation

 As long as optical power within an optical fiber is small, the fiber can be treated as a linear medium

Loss and refractive index are independent of the signal power

When optical power levels gets fairly high, the fiber becomes a nonlinear medium

Loss and refractive index depend on the optical power

Effects of Nonlinearity

Self-Phased Modulation (SPM) and Cross Phase Modulation (XPM)

A Single Channel's Pulses Are Self-Distorted as They Travel (SPM)

Multiple Channels Interact as They Travel (XPM)

- Channels beat against each other to form intermodulation products
- Creates in-band crosstalk that cannot be filtered (optically or electrically)

Four-Wave Mixing (FWM)

 If you have dispersion the beat signal will not fall on a real signal

Therefore, some dispersion can be good in preventing FWM in an optical network

FWM and Dispersion

Dispersion Washes out FWM Effects

The Three "R"s of Optical Networking

The Options to Recover the Signal from Attenuation/Dispersion/Jitter Degradation Are:

SM Optical Fiber Types

Types of Single-Mode Fiber

- SMF (standard, 1310 nm optimized, G.65)
 Most widely deployed so far, introduced in 1986, cheapest
- DSF (Dispersion Shifted, G.653)

Intended for single channel operation at 1550 nm

 NZDSF (Non-Zero Dispersion Shifted, G.655) For WDM operation in the 1550 nm region only TrueWave[™], FreeLight[™], LEAF, TeraLight[™], etc. Latest generation fibers developed in mid 90s For better performance with high capacity DWDM systems MetroCor[™], WideLight[™] Low PMD ultra long haul fibers

TrueWave Is a Trademark of Lucent; TeraLight Is a Trademark of Alcatel;

FreeLight and WideLight Are Trademarks of Pirelli; MetroCor Is a Trademark of Corning

Fiber Dispersion Characteristics

Different Solutions for Different Fiber Types

SMF (G.652)	 Good for TDM at 1310 nm OK for TDM at 1550 OK for DWDM (with Dispersion Mgmt)
DSF (G.653)	 OK for TDM at 1310 nm Good for TDM at 1550 nm Bad for DWDM (C-Band)
NZDSF (G.655)	 OK for TDM at 1310 nm Good for TDM at 1550 nm Good for DWDM (C + L Bands)
Extended Band (G.652.C) (Suppressed Attenuation in the Traditional Water Peak Region)	 Good for TDM at 1310 nm OK for TDM at 1550 nm OK for DWDM (with Dispersion Mgmt Good for CWDM (> Eight wavelengths)

The Primary Difference Is in the Chromatic Dispersion Characteristics

Span Design

Span Design Limits Attenuation

Source and receiver characteristics

Tx: 0dBm

Rx sensitivity: -28dBm

Dispersion tolerance: 1600ps/nm

OSNR requirements: 21dB

Span characteristics

RX

120km

Span Design Limits Amplification

Source and receiver characteristics

Tx: 0dBm

Rx sensitivity: -28dBm

Dispersion tolerance: 1600ps/nm

OSNR requirements: 21dB

Span characteristics

RX

120km

100km

Span Design Limits Dispersion

Source and receiver characteristics

Tx: 0dBm

Rx sensitivity: -28dBm

Dispersion tolerance: 1600ps/nm

OSNR requirements: 21dB

Span characteristics

RX

120km

Span Design Limits Dispersion Compensation

Span Design Limits of Amplification (OSNR)

3814_05_2007_c1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Confide

Real Network Design Challenges

- Complicated multi-ring designs
- Multiple wavelengths
- Any to any demand
- Nonlinearities
- Advanced modulation

Simulation and Network Design Software Is Used to Simplify Design

Network Design Tools? Concept to Creation Easier

e Optic	Ē	le <u>O</u> ptic	ns <u>N</u> etw	ork <u>T</u> ools <u>R</u> eports <u>H</u>	elp				_		_
) 邎 🛯	Ľ) 🗳 🙆	i • 🖬 🛛 (🟂 🖪 🗄 📩 🖊 💧	d 👌 🇞 🗔	- 🢡					
💩 Neti	\$	🗞 Network Summary 🛱 Optical Results Network Bill of Materia			mmary	Wavelength Routing			Link Availability		
Site Dialog					k Bill of Material						
E Site Para	1					VVavele	ength Routing resu	ult			
te Name		↓ 🗗	4) Me	ssages 🗜 🖶 🖻	F 🔻					08-23-04 at 02:22	:05
te IP Addres											
te MTTR (hc		Site	IP								1
			Address	Position-1	Unit-1	Port#-1	Port ID-1	Port Label-1	Attenuator	Patchcord Type	
laint. Centre		Site 1	0.0.0.0	Rack #1.DcuShelf #1.01	15216-DCU-350	<undef></undef>	<undef>1</undef>	RX			F
Shelf Layout		Site 1	0.0.0.0	Rack#1.DcuShelf#1.01	15216-DCU-350	<undef></undef>	<undef>1</undef>	TX			F
		Site 1	0.0.0.0	Rack#1.DcuShelf#1.02	15216-DCU-350	<undef></undef>	<undef>2</undef>	RX			F
NE Site Type		Site 1	0.0.0.0	Rack#1.DcuShelf#1.02	15216-DCU-350	<undef></undef>	<undef>2</undef>	TX			F
Configuration		Site 1	0.0.0.0	Rack#1.Main Shelf.02	15454-OPT-PRE	1	LINE-2-1-RX	COM-RX			F
Equipment		Site 1	0.0.0.0	Rack#1.Main Shelf.02	15454-0PT-PRE	2	LINE-2-1-TX	COM-TX			F
quipment		Site 1	0.0.0.0	Rack#1.Main Shelf.17	15454-0SC-CSM	1	LINE-17-1-RX	COM-RX			F
lybrid Node (Site 1	0.0.0.0	Rack#1.Main Shelf.17	15454-0SC-CSM	2	LINE-17-1-TX	COM-TX			F
		Site 1	0.0.0.0	Rack#1.Main Shelf.16	15454-0PT-PRE	2	LINE-16-1-TX	COM-TX			F
NE Site Ampl		Site 1	0.0.0.0	Rack#1.Main Shelf.01	15454-0SC-CSM	1	LINE-1-1-RX	COM-RX			Ī
Preamplifier V		Site 1	0.0.0.0	Rack#1.Main Shelf.14	15454-32-WSS	66	LINE-14-1-RX	EXP-RX			F
		Site 1	0.0.0.0	Rack#1.Main Shelf.14	15454-32-WSS	65	LINE-14-1-TX	EXP-TX			T I
Booster West		Site 1	0.0.0.0	Rack#1.Main Shelf.14	15454-32-WSS	69	LINE-14-3-TX	DROP-TX			T I
Preamplifier E		Site 1	0.0.0.0	Rack#1.Main Shelf.14	15454-32-WSS	29		RX-54.1 - 60.6 [5]			Ī
		Site 1	0.0.0.0	Rack #1.Main Shelf.14	15454-32-WSS	31		RX-54.1 - 60.6 [7]			Ra
Booster East		Site 1	0.0.0.0	Rack #1.Main Shelf.03	15454-32-WSS	69	LINE-3-3-TX	DROP-TX			1
		Site 1	0.0.0.0	Rack #1.Main Shelf.03	15454-32-WSS	29		RX-54.1 - 60.6 [5]			T i
		Site 1	0.0.0.0	Rack#1.Main Shelf.13	15454-32-DMX	29		TX-54.1 - 60.6 [5]			Í
		Site 1	0.0.0.0	Rack #1.Main Shelf.13	15454-32-DMX	31		TX-54.1 - 60.6 [7]			Ra
		Site 1	0.0.0.0	Rack #1.Main Shelf.05	15454-32-DMX	29		TX-54.1 - 60.6 [5]			
		Site 2	0.0.0.0	Rack#1.DcuShelf#1.01		<undef></undef>	<undef>1</undef>	RX RX			t i
		Site 2	0.0.0.0	Rack#1.DcuShelf#1.01		<undef></undef>	<undef>1</undef>	TX			t i
		Site 2	0.0.0.0	Rack#1.DcuShelf#1.02		<undef></undef>	<undef>2</undef>	RX			t i
		Site 2	0.0.0.0	Rack#1.DcuShelf#1.02		<undef></undef>	<under=2< td=""><td>TX</td><td></td><td></td><td>t i</td></under=2<>	TX			t i
		Site 2	0.0.0.0	Rack#1.Main Shelf.02	15454-OPT-PRE	1	LINE-2-1-RX	COM-RX			+ i
		Site 2	0.0.0.0		15454-OPT-PRE	2	LINE-2-1-TX	COM-RX COM-TX			+
		Site 2	0.0.0.0	Rack#1.Main Shelf.17		1	LINE-17-1-RX	COM-TX COM-RX			
		SHE Z			113434-080-081			COWERA			

- GUI-based network design entry
- Any-to-any demand
- Comprehensive analysis = first-time success
- Smooth transition from design to implementation
- Bill of materials
- Rack diagrams
- Step-by-step interconnect

DWDM Transmission

DWDM Systems

More DWDM Components

Optical Amplifier (EDFA)

Optical Attenuator Variable Optical Attenuator

Dispersion Compensator (DCM / DCU)

Intelligent DWDM Network Architecture

Integrated system architecture

2.5Gb Service Cards

10Gb Service Cards

40Gb Service Cards

- BENEFIT: All 40G applications covered by 1 transponder
- BENEFIT: Aggregation cards reduce the cost of service delivery and allow for "pay as you grow" using XFP

13814 05 2007 c1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Confidenti

Optical Amplifiers and Filters

EDFA

- 17dBm Variable Gain Pre-Amplifier with DCU Access
- 17dBm Variable Gain Booster
- 21dBm Variable Gain Booster
- 17 dBm Fix Gain Booster
- 21dBm Variable Gain Regional Amplifier with DCU Access
- L-Band 17dB Variable Gain Booster
- L-Band 20 dB Variable Gain Pre-Amplifier with DCU Access

RAMAN

- 500mW RAMAN
- w/ integrated
 7dBm
- Variable Gain Pre-Amplifier

Filters

- 40ch/80ch 2^o WSS ROADM
- 40ch 8⁰ WXC ROADM
- 40ch/80ch Mux/Demux

Optical Protection Schemes

Availability Solutions Comparison

Unprotected

- 1 client & 1 trunk laser (one transponder) needed, only
 1 path available
- No protection in case of fiber cut, transponder failure, client failure, etc..

Client Protected Mode

- 2 client & 2 trunk lasers (two transponders) needed, two optically unprotected paths
- Protection via higher layer protocol
Optical Trunk Protection

- Only valid in Point 2 Point topologies
- Protects against Fiber Breaks

Optical Splitter Protection

- Only 1 client & 1 trunk laser (single transponder) needed
- Protects against Fiber Breaks

Line Card / Y- Cable Protection

2 client & 2 trunk lasers (two transponders) needed

Increased cost & availability

··II··II·· CISCO

ROADM: Operational Benefits

Manual DWDM Network Life-Cycle: Present Mode of Operation (PMO)

Manual installation, manual power measurements and VOA tweaking at every site for every I

Manual DWDM processes: labor intensive and error prone Result: high OpEx costs

13814_05_2007_c1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Confide

ROADM Based DWDM Networks

Simplify Opex, Simplify Network Architecture, Simplify Network Planning

OADM Based Architecture

Re-plan network every time a new services is added

Certain sites can only communicate with certain other sites

Extensive man hours to retune the network

Need to brake entire ring to prevent lasing

1-8ch OADM

ROADM Based DWDM Networks

Simplify Opex, Simplify Network Architecture, Simplify Network Planning

OADM Based Architecture

Re-plan network every time a new services is added

Certain sites can only communicate with certain other sites

Extensive man hours to retune the network

Need to brake entire ring to prevent lasing

ROADM Based Architecture

Plan network once

All nodes can talk to all nodes day one

- The network Automatically Tunes itself
- Improved network performance with DGE at every site

DWDM Mesh Benefits

Capacity Increase, Efficient Fiber Usage, Increased Availability

Ring-Based Architecture

Traffic must follow ring topology, constricted Inefficient traffic routing increase regeneration Costly transponders for OEO ring interconnects Single choice for service path & protect path

2° ROADM

DWDM Mesh Benefits

Capacity Increase, Efficient Fiber Usage, Increased Availability

Ring-Based Architecture

Traffic must follow ring topology, constricted Inefficient traffic routing increase regeneration Costly transponders for OEO ring interconnects Single choice for service path & protect path

2° ROADM

Mesh Architecture

- A–Z provisioning—data follows fiber topology more efficient use of fiber
 - Better load balancing increases capacity
 - Shorter distance = less regeneration

Eliminate transponders

More options for service & protect paths

Easy planning with Cisco MetroPlanner

Easy planning with Cisco MetroPlanner

Easy planning with Cisco MetroPlanner

Automated optical layer for endto-end connection setup; Manual patching of client at endpoints only

r to-end connection setup; Manual patching of client at endpoints only

BRKOPT-1101 13814 05 2007 c1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Confidential shooting via CTM

Easy planning with Cisco MetroPlanner

Automated optical layer for endto-end connection setup; Manual patching of client at endpoints only

Simplified, graphical A-Z provisioning & trouble shooting via CTM

Automated DWDM Processes: simplified, SONET-like operation Result: Reduces OpEx, facilitates wide deployment

Cisco ONS 15454 MSPP/MSTP Functionality

Cisco Vision: Flexible and Intelligent Optical Network

Traditional Vendors

Inflexible

- Preplanning
- Rigid configurations
- Limited application support
- No linkage with service delivery/enables

Cisco Optical

Flexible

- ROADM: Fully flexible design rules
- ROADM: Any wavelength anywhere
- Wide variety of applications
- Integrated TDM / Layer2 functionalities + Direct interconnection with L2 / L3

Difficult to Manage

Intelligent Software Enables Automated Network Set-Up and Management Along Network Life

BRKOPT-1101

3814_05_2007_c1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Col

Cisco IP NGN Transport Network Innovation– Investment Protection

BRKOPT-1101

Compatible to Existing Management System (CTM)

BRKOPT-1101

3814_05_2007_c1 © 2007 Cisco Systems, Inc. All rights reserved. Cisco Confiden

Summary

Summary

- Introduction on terminology
- Optical Propagation
- Attenuation and Compensation
 - Chromatic

PMD

- Non-Linearity
- Fiber types
- Basic span design
- DWDM System/ROADM
- ONS 15454 MSPP/MSTP Functionality

Q and A

#